Covariant and equivariant formality theorems
نویسندگان
چکیده
منابع مشابه
Formality in an Equivariant Setting
We define and discuss G-formality for certain spaces endowed with an action by a compact Lie group. This concept is essentially formality of the Borel construction of the space in a category of commutative differential graded algebras over R = H•(BG). These results may be applied in computing the equivariant cohomology of their loop spaces.
متن کاملFormality of Equivariant Intersection Cohomology of Algebraic Varieties
We present a proof that the equivariant intersection cohomology of any complete algebraic variety acted by a connected algebraic group G is a free module over H∗(BG).
متن کاملHochschild Cohomology versus De Rham Cohomology without Formality Theorems
We exploit the Fedosov-Weinstein-Xu (FWX) resolution proposed in q-alg/9709043 to establish an isomorphism between the ring of Hochschild cohomology of the quantum algebra of functions on a symplectic manifold M and the ring H(M,C((~))) of De Rham cohomology of M with the coefficient field C((~)) without making use of any version of formality theorem. We also show that the Gerstenhaber bracket ...
متن کاملPattern Equivariant Cohomology and Theorems of Kesten and Oren
In 1966 Harry Kesten settled the Erdős-Szüsz conjecture on the local discrepancy of irrational rotations. His proof made heavy use of continued fractions and Diophantine analysis. In this paper we give a purely topological proof Kesten’s theorem (and Oren’s generalization of it) using the pattern equivariant cohomology of aperiodic tiling spaces.
متن کاملFormality and Star Products
These notes, based on the mini-course given at the PQR2003 Euroschool held in Brussels in 2003, aim to review Kontsevich’s formality theorem together with his formula for the star product on a given Poisson manifold. A brief introduction to the employed mathematical tools and physical motivations is also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2005
ISSN: 0001-8708
DOI: 10.1016/j.aim.2004.02.001